A variational model for SPECT reconstruction with a nonlinearly transformed attenuation prototype

نویسندگان

  • Sven Barendt
  • Jan Modersitzki
چکیده

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. In single photon emission computed tomography (SPECT) reconstruction, the objective is to reconstruct the density of a radioactive marker inside a patient from projections. In this work, state-of-the-art reconstruction models for SPECT reconstruction with a so-called attenuation prototype are discussed. A multimodal correspondence problem is brought up and a novel variational model for SPECT reconstruction is presented that addresses the correspondence problem. This is followed by a description of a numerical realization. Numerical results show the necessity of the proposed SPECT reconstruction model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SPECT Reconstruction with a Non-linear Transformed Attenuation Prototype

This work deals with the single photon emission computed tomography (SPECT) reconstruction process. As a SPECT measurement also depends on unknown attenuation properties of the tissue, such a process is challenging. Furthermore, the given attenuation may not be a good approximation to the true attenuation field. Reasons are repositioning or movement of the patient such as relaxation during scan...

متن کامل

A model based, anatomy dependent method for ultra-fast creation of primary SPECT projections

  Introduction: Monte Carlo (MC) is the most common method for simulating virtual SPECT projections. It is useful for optimizing procedures, evaluating correction algorithms and more recently image reconstruction as a forward projector in iterative algorithms; however, the main drawback of MC is its long run time. We introduced a model based method considering the eff...

متن کامل

Evaluation of iterative reconstruction method and attenuation correction on brain dopamine transporter SPECT using anthropomorphic striatal phantom

Objective(s): The aim of this study was to determine the optimal reconstruction parameters for iterative reconstruction in different devices and collimators for dopamine transporter (DaT) single-photon emission computed tomography (SPECT). The results were compared between filtered back projection (FBP) and different attenuation correction (AC) methods.Methods: An anthropomorphic striatal phant...

متن کامل

Influences of reconstruction and attenuation correction in brain SPECT images obtained by the hybrid SPECT/CT device: evaluation with a 3‐dimensional brain phantom

Objective: The aim of this study was to evaluate the influences of reconstruction and attenuation correction on the differences in the radioactivity distributions in 123I brain SPECT obtained by the hybrid SPECT/CT device. Methods: We used the 3-dimensional (3D) brain phantom, which imitates the precise structure of gray mater, white matter and bone regions. It was filled with 123I solution (20...

متن کامل

Attenuation Correction in SPECT during Image Reconstruction using an Inverse Monte Carlo Method: A Simulation Study

Introduction: The main goal of SPECT imaging is to determine activity distribution inside the organs of the body. However, due to photon attenuation, it is almost impossible to do a quantitative study. In this paper, we suggest a mathematical relationship between activity distribution and its corresponding projections using a transfer matrix. Monte Carlo simulation was used to find a precise tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Comput. Math.

دوره 90  شماره 

صفحات  -

تاریخ انتشار 2013